One-to-One and One-to-Multiple User-Task Mapping in
Task-Abundant Mobile Crowd Sensing

Yijun Liu, Ting Li

Oxford College of Emory University, Department of Computer Science

Introduction

Mobile crowd sensing (MCS) is a technique that relies on sensors in mobile devices
that are commonly used among people, such as cameras and GPS in smartphones
and wearables.?! This paradigm uses humans who equip those devices to sense
the world and act as sensors.!]

(3) Reporte (4) Reporte Processed (5) Analyze

Sensing Data Sensng Data Sensing Data
‘Ir_-' .\:‘ ;‘_.-' -.,_:.' __.-'. .\:w l}' ._1.\.1
Bl -
O f d
-D -
- #f l'l,{_ =
Participant I T Vieoalisation
Celluar Application
AP Server
"._ (2)Distrbute @ ?EE’;EHE /
w"*—-.._w) Task] -’ -.."'““ﬂ--_,q T .--""J;
(7) Feedback (6) Feedback

Fig. 1 Mobile Crowd Sensing!"

With a large number of users and tasks, one of the fundamental problems is how to al-
locate these tasks to each user with the consideration of distance traveled by all users,
maximum distance traveled by each user, the number of total users recruited, and time
sensitivity for each task. Specifically, this problem is less focused in situations where the
number of tasks is greater than the number of users from the total user pool. Thus, this
study investigates the task allocation in task-abundant MCS. In particular, there are two
scenarios studied: one-to-one mapping (each user can only fulfill one task) and one-to
multiple mapping (each user can fulfill multiple tasks) between users and tasks.

Methods

STEP 1: User Data Cleaning - R
The data used in this research comes from the D4D dataset.!* It contains 50,000

users’ phone call records and cell phone tower locations. Each users’ phone call
recorded includes indicators to indicate whether it was an even or odd week.
The data cleaning process includes 1. merging the data from biweekly to weekly
and removing duplicates as needed; 2. deriving each user’s available locations
and schedules from their shown-up traces.

STEP 2: Task Data Generation - JAVA

A set of tasks with time and location is randomly generated, given the maximum and
minimum boundaries for longitudes and altitudes. The boundaries are determined by
users’ traces from the D4D dataset.

STEP 3: Connection Boundary Determination - R

Connection boundary is the maximum allowed traveling distance between each user
and task. The traveled distance distribution between 10,000 users and 10,000 tasks has
been considered to set up the connection boundary, which is 1 quartile (6.06348km).

STEP 4: Algorithms - JAVA

¢ i © ——@
| /M\ |

1 R @ '®
matching: 1-1',2-2', 3-4', 4-5' L R $10 4 K9

Fig. 2 Bipartite Matching Fig. 3 Bipartite Matching

Fig. 4 Greedy Algorithm(3]
Repeated Augmenting Pathls! Maximum Flow!(>] & 4 y Alg

Thisresearchusesthethreealgorithms demonstratedinthefiguresabove. Bipartite match-
ing represents the one-to-one mapping between users and tasks. The repeated augment-
ing path includes using the Depth-First Search algorithm repeatedly until no augmenting
pathis found (Berge’s Theorem)sl. Maximum flow adopts the idea of adding virtual source
and sink nodes; the edge between users and tasks is set to 1 for all, and the Ford-Fulker-
son algorithm is used®. Greedy algorithms are used in the one-to-multiple mapping. The
two goals in the greedy algorithms are selecting the minimum number of users and the
minimum distance traveled.

STEP 5 & 6: Simulation - JAVA; Data Analysis

See results & conclusion/discussion.

Results

Total Tasks Total Users

0 20 40 60 80 1000 1200 0 2 4 60 8 100 120 The two fi gures to the left demonstrate
350 - 40 350 40
I e rostn |y g B e the bipartite matching algorithms for vary-

w
o
o
L]
w
o

]
I
1
o
wW
o

I
N
(3]

[
o
Task Completed

Traveled (km)
N
o1
o
]

250

ance Traveled (km)
| |

N
(=)
Task Completed

I
—_
ol

—

=)
Distance
[]

—

o

B
2 200

ing in numbers of users with fixed total
tasks or varying in the number of tasks for
fixed total users. Both bipartite matching
algorithms (finding the augmenting path

- 100 I . .
: 5 : and maximum flow) yield the same result.
150 -0 50 I 0 - B
0 200 400 600 800 1,000 1,200 0 20 40 60 80 100 120 Addltlona”y’ bOth the taSk Completed and
Total Tasks Total Users : 1
Fig. 5 Bipartite Matching & Bipar- Fig. 6 Bipartite Matching & Bipar- distance traveled increase as the total taSk/
tite Matching to Max Flow with tite Matching to Max Flow with user increases, but the slope decreases.
Fixed Number of User at 80 Fixed Number of Task at 600
Total Tasks Total Users Total Tasks Total Users
0 200 400 600 800 1,0|00 1,200 0 20 40 60 80 100 120 0 200 400 600 800 1000 1,200 0 20 40 60 80 00 120
2,500 v i 1,500 540 900 20 540 25
T *.‘HB' 1ce Traveled-(km) i L 5 om i T1 e I
rri“{?r 'et:’ 1 | 50 1,480 M - 520 800 : rasitpaﬁip’l'md R I 520 ‘_:{ Jifi fﬁcpﬁied !
2,000 v ~ SEEE: Be =N SRy I = [20
7 f I 2 1,460 y \ R C 500 700 e - 15 500 v . -
< % ~6005 <1440 EEE F 3 7600 . I R . -3
© 1,500 % 3 . 80 ¢ 2 i 480 n w5
0 3 91420 . T3 B50 - a 2
o 2 . E 8 " Ca0E § x . L10E E 460 I
= = o T
0 400 2 o 1,400 - 2 2 400 -8 2 [5
1,000 - f wd ¥ N 440 . 10 5
g [F £1380 R F 300 5 F 3
2 N I 2 B . 5
° 500 2 200) 1,360 ® Distance Traveled (km - 20 - 420 5
2 I 13403 u R Task Complete - 400 100 [400
0 0 1,320 ° - 380 0 I 0 380 T T T T [T T T T[T T T T [T T T T [T T T T [T TT1 i 0
0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 0 200 400 600 800 1000 1200 0 20 40 60 80 00 120
Total Tasks Total Users Total Tasks Total Users
Fig. 7 Minimum Distance Selection Fig. 8 Minimum Distance Selection Fig. 9 Minimum User Selection Fig. 10 Minimum User Selection
with Fixed User Number at 80 with Fixed Task Number at 600 with Fixed Total User at 80 with Fixed Task Number at 600

The four figures above demonstrate the greedy algorithms for varying in numbers of users with
fixed total tasks or varying in the number of tasks for fixed total users. They present the changes
in task completion and distance traveled/user participation for the minimum distance/minimum
user selection algorithm. For figure 5, both the distance and task completeness increase as the to-
tal task increase; for figure 6, the distance traveled fluctuates. The distance for completing tasks
decreases when there is a larger user pool. For figure 7, the user participation fluctuates because
of the uncertainty of the tasks; and for figure 8, the user participation fluctuates because there
are more users that can be selected from a larger user pool.

Total Tasks Total Tasks . ' Total Users Total Users
0 200 400 600 800 1,000 1,200 0 200 400 600 800 1,000 1,200 0 20 40 60 80 100 120 0 2 40 60 80 100 120
12,000 12000 60 60 g goo 00 600

6,000

550

il
5
3

10,000

50| Ll | u L 50 50 i

5,000

d (km)

I
0 o 40

8,000 -3
f40g8 3§
g g

T 0 N 8 e [BN N BN N N
%005 54,000 | | ms
93 5 (N1 BN (N1 BN B0 BN 1 EW r

0 W
=

450 § '9 3,000
0 [§]

veled (km)

20
]
_3055
L 3 %20

g 6,000
=

X @ EEE" N N NN (N BN N1 NN e
@ 92,000 0 -
400+ A i C

Q
c
8 4,000
(/]

wo! WEEEEERERE R 350

2,000 - 20

e hBERRRER

350

0T 300
0 20 4 60 8 100 120

i 0 10 —10 0 300 Total Users — inDis

0 200 400 600 800 1,000 1,200 0 200 400 600 800 1,000 1,200 0 20 40 60 80 100 120 B MinUser
Total Tasks Total Tasks Total Users ko

Fig. 11 Distance Traveled: Greedy Fig. 12 User Participated: Greedy Fig. 13 User Participated: Greedy Fig. 14 Distance Traveled: Greedy
Comparison with Fixed User Num- Comparison with Fixed User Num- Comparison with Fixed Task Num- Comparison with Fixed Task Num-

ber at 80 ber at 80 ber at 600 ber at 600

The four figures above compare the greedy algorithms for either the total user number or the to-
tal task number is fixed. They present that both greedy algorithms fulfill their purposes in having

advantages in different criteria (distance traveled or user participation) over another.

The two figures to the right compare the bi- oo 1 s 2 25 3 a5 o s 1w 2 25 3 a5 4
partite matching algorithms to the greedy al- "o a1 13:3:3;“&/;5.”3:""

gorithms forboth the percentage of taskcom- s “

pleteness and distance traveled by each user N

~

06 CSYE 2os
=)
~

under the two scenarios when varying in num-

% completene

% completeness

bers of users with fixed total tasks or varying

in the number of tasks for fixed total users. 02 02

o ° o LI 250 L
The bipartite matching shows a much smaller S L m e
task completeness percentage and distance ferte MO0 Mt Spare - MinDis - Milser

traveled per user because each user can only

500

400

300 £

e/User (

200 3
c

100

Fig. 15 Greedy and Bipartite Com- Fig. 16 Greedy and Bipartite Com-

be matched only once. Users have different parison with Fixed Number of parison with Fixed Task Number at

abilities in those two settings. User at 80 600

) EMORY | 0XFOR®

Conclusion & Discussion

In the one-to-one mapping scenario, bipartite matching presents
lower task completeness rates (7.59%) in both user-fixed and task-
fixed situations, while in one-to-multiple mapping, the rates yield-
ed by the greedy algorithms are 85.8% and 82.0% for user-fixed
and task-fixed algorithms respectively. Even though the greedy
algorithms outperform the bipartite matching in task complete-
ness, bipartite matching has the least total and per user distance
traveled values.

In the one-to-one mapping scenario, although the task complete-
nessforboth greedyalgorithmsremainsthe same, thereisatrade-
off between user participation and distance traveled. With more
users, more tasks can be completed with less distance. In the us-
er-fixed situation, the average distance traveled to complete each
task in MinUser (12.75 km/user) is 4.45 times more than MinDis
(2.87 km/user); the average number of tasks each user complet-
ed in MinDis (9.64 tasks) is 3.09 times more than MinUser (29.77
tasks). In the task-fixed situation, the average distance traveled
to complete each task in MinUser (13.60 km/user) is 4.63 times
more than MinDis (2.94 km/user); the average number of tasks
each user completed in MinDis (10.18 tasks) is 2.05 times more
than MinUser (33.24 tasks). In short, the MinDis algorithm seems
to have less loss than MinUser.

This study only demonstrates a basic comparison between the
greedy algorithms and the bipartite matching algorithms. It fails to
consider situations, where have a larger data size and the results
are not significant in situations where there are more users than
tasks. Additionally, there might be more complicated MCS tasks
that include variables more than distance and time (e.g. sensors
users have). Furthermore, this study does not take heterogenous
time sensitivities for tasks into consideration. In the future, it is
possible to test out more variables and mock more scenarios in-
cluding the ones mentioned above.

Acknowledgement

Thanks to Ting Li, my mentor, for instructing and helping me
throughout the program; thanks to Summer Oxford Research
Scholars Program for providing this opportunity to me and its
funding.

Bibliography

[1] Bayan Hashr Alamri & Muhammad Mostafa Monowar & Suhair
Alshehri, 2018. “A privacy-preserving collaborative reputation system
for mobile crowdsensing,” International Journal of Distributed Sensor
Networks, , vol. 14(9), pages 15501477188, September.

[2] Crowdsourcing to Smartphones: Incentive Mechanism Design for
Mobile Phone Sensing, Dejun Yang, Guoliang Xue, Xi Fang, and Jian
Tang, ACM International Conference on Mobile Computing and Net-
working (MobiCom), 2012.

3]"Greedy Algorithms.” Brilliant Math & Science Wiki, 2021,
brilliant.org/wiki/greedy-algorithm/.

4] V.D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F.
Morlot, Z. Smoreda, and C. Ziemlicki. Data. for development: the- d4d
challenge’ on. mobile’ phone- data.. 2012.

[5] Wayne, K. (2013). 7. NETWORK FLOW 1I [Slides]. Princeton.
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/07Net-
workFlowl.pdf

