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Introduction

Mobile crowd sensing (MCS) is a technique that relies on sensors in mobile devices
that are commonly used among people, such as cameras and GPS in smartphones
and wearables.?! This paradigm uses humans who equip those devices to sense
the world and act as sensors.!]
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Fig. 1 Mobile Crowd Sensing!"

With a large number of users and tasks, one of the fundamental problems is how to al-
locate these tasks to each user with the consideration of distance traveled by all users,
maximum distance traveled by each user, the number of total users recruited, and time
sensitivity for each task. Specifically, this problem is less focused in situations where the
number of tasks is greater than the number of users from the total user pool. Thus, this
study investigates the task allocation in task-abundant MCS. In particular, there are two
scenarios studied: one-to-one mapping (each user can only fulfill one task) and one-to
multiple mapping (each user can fulfill multiple tasks) between users and tasks.

Methods

STEP 1: User Data Cleaning - R
The data used in this research comes from the D4D dataset.!* It contains 50,000

users’ phone call records and cell phone tower locations. Each users’ phone call
recorded includes indicators to indicate whether it was an even or odd week.
The data cleaning process includes 1. merging the data from biweekly to weekly
and removing duplicates as needed; 2. deriving each user’s available locations
and schedules from their shown-up traces.

STEP 2: Task Data Generation - JAVA

A set of tasks with time and location is randomly generated, given the maximum and
minimum boundaries for longitudes and altitudes. The boundaries are determined by
users’ traces from the D4D dataset.

STEP 3: Connection Boundary Determination - R

Connection boundary is the maximum allowed traveling distance between each user
and task. The traveled distance distribution between 10,000 users and 10,000 tasks has
been considered to set up the connection boundary, which is 1 quartile (6.06348km).

STEP 4: Algorithms - JAVA
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Fig. 2 Bipartite Matching Fig. 3 Bipartite Matching

Fig. 4 Greedy Algorithm(3]
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Thisresearchusesthethreealgorithms demonstratedinthefiguresabove. Bipartite match-
ing represents the one-to-one mapping between users and tasks. The repeated augment-
ing path includes using the Depth-First Search algorithm repeatedly until no augmenting
pathis found (Berge’s Theorem)sl. Maximum flow adopts the idea of adding virtual source
and sink nodes; the edge between users and tasks is set to 1 for all, and the Ford-Fulker-
son algorithm is used®. Greedy algorithms are used in the one-to-multiple mapping. The
two goals in the greedy algorithms are selecting the minimum number of users and the
minimum distance traveled.

STEP 5 & 6: Simulation - JAVA; Data Analysis

See results & conclusion/discussion.

Results
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The four figures above demonstrate the greedy algorithms for varying in numbers of users with
fixed total tasks or varying in the number of tasks for fixed total users. They present the changes
in task completion and distance traveled/user participation for the minimum distance/minimum
user selection algorithm. For figure 5, both the distance and task completeness increase as the to-
tal task increase; for figure 6, the distance traveled fluctuates. The distance for completing tasks
decreases when there is a larger user pool. For figure 7, the user participation fluctuates because
of the uncertainty of the tasks; and for figure 8, the user participation fluctuates because there
are more users that can be selected from a larger user pool.
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The four figures above compare the greedy algorithms for either the total user number or the to-
tal task number is fixed. They present that both greedy algorithms fulfill their purposes in having

advantages in different criteria (distance traveled or user participation) over another.
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Conclusion & Discussion

In the one-to-one mapping scenario, bipartite matching presents
lower task completeness rates (7.59%) in both user-fixed and task-
fixed situations, while in one-to-multiple mapping, the rates yield-
ed by the greedy algorithms are 85.8% and 82.0% for user-fixed
and task-fixed algorithms respectively. Even though the greedy
algorithms outperform the bipartite matching in task complete-
ness, bipartite matching has the least total and per user distance
traveled values.

In the one-to-one mapping scenario, although the task complete-
nessforboth greedyalgorithmsremainsthe same, thereisatrade-
off between user participation and distance traveled. With more
users, more tasks can be completed with less distance. In the us-
er-fixed situation, the average distance traveled to complete each
task in MinUser (12.75 km/user) is 4.45 times more than MinDis
(2.87 km/user); the average number of tasks each user complet-
ed in MinDis (9.64 tasks) is 3.09 times more than MinUser (29.77
tasks). In the task-fixed situation, the average distance traveled
to complete each task in MinUser (13.60 km/user) is 4.63 times
more than MinDis (2.94 km/user); the average number of tasks
each user completed in MinDis (10.18 tasks) is 2.05 times more
than MinUser (33.24 tasks). In short, the MinDis algorithm seems
to have less loss than MinUser.

This study only demonstrates a basic comparison between the
greedy algorithms and the bipartite matching algorithms. It fails to
consider situations, where have a larger data size and the results
are not significant in situations where there are more users than
tasks. Additionally, there might be more complicated MCS tasks
that include variables more than distance and time (e.g. sensors
users have). Furthermore, this study does not take heterogenous
time sensitivities for tasks into consideration. In the future, it is
possible to test out more variables and mock more scenarios in-
cluding the ones mentioned above.
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